
How to Best Leverage
JWTs for API Security

Isabelle Mauny, 42Crunch Field CTO and co-founder
Dmitry Sotnikov, 42Crunch CPO, Curator of APIsecurity.io

SLIDE

2

© COPYRIGHT 42CRUNCH

Agenda

• 5-minute introduction to JWT ;)

• 2-minute introduction to API protection with 42Crunch

• Common JWT attacks and the way to protect against them

SLIDE

3

© COPYRIGHT 42CRUNCH

Why do we need
tokens?

User Client App Identity Provider Your API/Resource

7Validate Authorization Code + Client ID + Client Secret

3
Redirect to login/authorization prompt

5
Authorization Code

8
Access Token

1
Click login link

4
Authenticate and Consent

9
Request user data with access token

10

Response

2

Authentication Code Request to / authorize

6

Authorization Code + Client ID + Secret to /oauth/token

SLIDE

4

Tokens can be anything
ec9f8fbb-a357-4fb6-a6af-de6ce54fb3d2

SLIDE

5

© COPYRIGHT 42CRUNCH

{

"user":"dmitry@42crunch.com",

"is_admin":false,

"twitter":"DSotnikov",

"iss":1579551140,

"exp":1579551740

}

Why JSON Web Tokens?
• User info right in the token

• Decouple resources and IdP

• No need for shared databases

• No extra API calls

• JSON is easy to use in code

SLIDE

6

© COPYRIGHT 42CRUNCH

Common Use Cases
• OAuth2

• OpenID Connect id_token

• Any JSON payload that needs to
be protected and sent

SLIDE

7

© COPYRIGHT 42CRUNCH

POST /book HTTP/1.1
Content-Type: application/json
Accept: application/json
Host: resource.catalog.library
Authorization: Bearer
IUojlkoiaos298jkkdksdosiduIUiopo
{
"isbn":"9780201038019",
"author":"Donald Knuth",
"title":"The Art of Computer
Programming"
}

Tokens are Encoded
• To pass them in URLs and

headers

• Base64URL encoding is used

• Encoding != signing

• Encoding != encryption

SLIDE

8

© COPYRIGHT 42CRUNCH

How do you know that
the token is from IdP?
• You sign them

• IdP signs the new token:
1. Calculates signature
2. Appends it to token

• Client passes the token to
resource as is

• Resource verifies the signature

User Client App Identity Provider Your API/Resource

7Validate Authorization Code + Client ID + Client Secret

3
Redirect to login/authorization prompt

5
Authorization Code

8
Access Token

1
Click login link

4
Authenticate and Consent

9
Request user data with access token

10

Response

2

Authentication Code Request to / authorize

6

Authorization Code + Client ID + Secret to /oauth/token

SLIDE

9

© COPYRIGHT 42CRUNCH

{

"alg" : "HS256",

"typ" : "JWT"

}

Signing Process
1. Create JOSE header

2. Encode it

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9

SLIDE

10

© COPYRIGHT 42CRUNCH

JOSE Header Key Parameters
• alg: None, RS256, HS256, … - full list in RFC7518
• jku: URI to a set of JSON-encoded public keys one of which corresponds to the key used to sign the token
• jwk: public key corresponding to the one used to sign the token

• kid: hint indicating which key was used
• x5u: URI for X.509 public key certificate or certificate chain
• x5c: X.509 public key certificate or certificate chain
• x5t: encoded SHA-1 thumbprint / digest of the DER encoding of X.509 certificate
• x5t#S256: SHA-256 thumbprint

• typ: media type of this token: e.g. JWT
• cty: media type of JWT content
• crit: lists extensions that must be understood and processed

https://tools.ietf.org/html/rfc7518

SLIDE

11

© COPYRIGHT 42CRUNCH

{

"alg" : "HS256",

"typ" : "JWT"

}

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9

Signing Process
1. Create JOSE header

2. Encode it

SLIDE

12

© COPYRIGHT 42CRUNCH

{
"user":"dmitry@42crunch.com",
"is_admin":false,
"twitter":"DSotnikov",
"iss":1579551140,
"exp":1579551740
}

Signing Process
1. Create JOSE header

2. Encode it

3. Create payload (does not have
to be JSON)

4. Encode it too
eyJ1c2VyIjoiZG1pdHJ5QDQyY3J1bmNoLmNvbSI
sImlzX2FkbWluIjpmYWxzZSwidHdpdHRlciI6Ik
RTb3RuaWtvdiIsImlzcyI6MTU3OTU1MTE0MCwiZ
XhwIjoxNTc5NTUxNzQwfQ

SLIDE

13

© COPYRIGHT 42CRUNCH

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXV

CJ9.eyJ1c2VyIjoiZG1pdHJ5QDQyY3J1b

mNoLmNvbSIsImlzX2FkbWluIjpmYWxzZS

widHdpdHRlciI6IkRTb3RuaWtvdiIsIml

zcyI6MTU3OTU1MTE0MCwiZXhwIjoxNTc5

NTUxNzQwfQ

Signing Process
1. Create JOSE header

2. Encode it

3. Create payload (does not have
to be JSON)

4. Encode it too

5. Concatenate with . in between

SLIDE

14

© COPYRIGHT 42CRUNCH

Signing Process
1. Create JOSE header

2. Encode it

3. Create payload (does not have to
be JSON)

4. Encode it too

5. Concatenate with . in between

6. Compute signature using alg

7. Base64URL-encode and append

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXV

CJ9.eyJ1c2VyIjoiZG1pdHJ5QDQyY3J1b

mNoLmNvbSIsImlzX2FkbWluIjpmYWxzZS

widHdpdHRlciI6IkRTb3RuaWtvdiIsIml

zcyI6MTU3OTU1MTE0MCwiZXhwIjoxNTc5

NTUxNzQwfQ.n34z-LWu4INXl8-Cgac-

Ues7r99xgbt_A4aHuCAZRLU

DEMO: Decode a Token

SLIDE

16

© COPYRIGHT 42CRUNCH

¯_(ツ)_/¯
What could possibly go
wrong?!

SLIDE

17

An API should not blindly trust
anything it receives from the client.

42Crunch API Security
Platform

42Crunch API Security Platform

API Security Audit API Conformance Scan API Firewall Protection

Discover existing and new APIs

Perform 200+ security best
practices checks

Enforce corporate security policies

Dynamic security testing of API

Discover implementation security
flaws and discrepancies

Unveil the full attack surface

Effective positive security API firewall

Sub-millisecond overhead

Works with existing API gateways &
microservices deployments

IDE & CI/CD Plugins

Attacks and Remedy

SLIDE

21

© COPYRIGHT 42CRUNCH

None Algorithm Attack
1. Attacker modifies or creates a

token

{
"alg": "HS256",
"typ": "JWT"

}.
{

"user":"dmitry@42crunch.com",
"is_admin":false

}.
X0Wglk3qxprLVTw2cYzuwEcJEEfED2F5XgmT
dQFY7A

SLIDE

22

© COPYRIGHT 42CRUNCH

None Algorithm Attack
1. Attacker modifies or creates a

token

{
"alg": "HS256",
"typ": "JWT"

}.
{

"user":"dmitry@42crunch.com",
"is_admin":true

}.
X0Wglk3qxprPLVTw2cYzuwEcJEEfED2F5Xgm
TdQFY7A

SLIDE

23

© COPYRIGHT 42CRUNCH

None Algorithm Attack
1. Attacker modifies or creates a

token

2. They set alg to None in the
header

3. And send it without a signature

4. Since alg is None, this is a
valid JWS

{
"alg": "None",
"typ": "JWT"

}.
{

"user":"dmitry@42crunch.com",
"is_admin":true

}.

eyJhbGciOiAiTm9uZSIsCiAgInR5cCI6ICJK
V1QifQ.
eyJ1c2VyIjoiZG1pdHJ5QDQyY3J1bmNoLmNv
bSIsImlzX2FkbWluIjp0cnVlfQ.

SLIDE

24

© COPYRIGHT 42CRUNCH

{
"alg" : "RS256",
"typ" : "JWT“

}.
{

"user":"dmitry@42crunch.com",
"is_admin":false

}.
RSA signature with RSA private key

Changed to:
{
"alg" : “HS256",
"typ" : "JWT“

}.
{

"user":"dmitry@42crunch.com",
"is_admin":true

}.
HMAC signature with RSA public key

HMAC Algorithm Attack
• HMAC is symmetric: same shared

key used to sign & verify

• RSA is asymmetric: public & private
keys

• Attacker:
1. Puts HS256 instead of RS256
2. Signs with public RS256 key

• API code blindly uses public RSA key
with HMAC alg to verify signature

JWT Header Abuse

SLIDE

26

© COPYRIGHT 42CRUNCH

{
"alg" : "HS256",
"typ" : "JWT",
"kid" : "secret/hmac.key“

}

change to:
{
"alg" : "HS256",
"typ" : "JWT",
"kid" : "../../styles/site.css“

}

kid as a file path
1. Developers use a filepath for the key

2. Developers do not sanitize the value

3. Attackers specify any valid path with
known content

4. They use symmetric alg and that
known content

SLIDE

27

© COPYRIGHT 42CRUNCH

Unsafe SQL retrieval:

Key.where("key = #{kid}").first

Attack value:

"kid": "blah' UNION SELECT 'key';--"

kid with SQL Injection
1. Developers use unsafe code to

retrieve key from database

2. Attackers supply invalid key ID with
a SQL injection resulting in known
result

SLIDE

28

© COPYRIGHT 42CRUNCH

File.open(key_filename), system(),

exec(), etc.

{

"kid":"'filename' | whoami;“

}

Command Injection
1. Developers use header parameter as

a filename and unsafe operation to
read the file

2. Attackers send an injection string
and get their commands executed
on the server

Demo:
Protecting JWT Header

SLIDE

30

© COPYRIGHT 42CRUNCH

Demo Setup

o Protection at firewall level enforces JWT presence.

o JWT is validated according to internal protection rules and

custom header/payload schemas.

SLIDE

31

© COPYRIGHT 42CRUNCH

Demo: Header Validation

1. Algorithm: overall type (HMAC, RSA, EDCH) and custom type (ex PS256 only)

2. Type (set as JWT)

3. Kid : is it present ? And if yes, if it valid ?

SLIDE

32

© COPYRIGHT 42CRUNCH

Lack of Signature Validation

1. Developers may not validate signature at all

2. They blindly trust the signature passed in the header

3. For nested JWTs, signature must be validated at each level

SLIDE

33

© COPYRIGHT 42CRUNCH

signature = HMAC-

SHA256(base64urlEncode(header) +

'.' + base64urlEncode(payload),

"qwerty")

Bruteforce Attack on
Signature
1. Developers use a low entropy key

2. Attackers intercept a valid token

3. They now know the alg and have a token
with valid signature

4. They can run a dictionary attack figure
out the key

5. Once the signature matches they know
your key and can forge tokens

SLIDE

34

© COPYRIGHT 42CRUNCH

Substitution Attack:
Different Recipient
• Attacker gets a valid token for one

organization / resource and uses it with
another

• To prevent this, make each token
specific to the issuer, subject, resource:

• iss: URL of the IdP

• sub: to whom it was issued

• aud: audience for the token

Authorization
Server Org. 1

Used
by

Used
by

Derived from

Issues Token

for Org. 1

{
“sub”: “joe”
“role”: “admin”

}

No
rm

al
 u

se

Mali
cio

us
 u

se

Private Signing Key Public Signing Key

Org. 2

Used
by

Attacker (Joe)

Gets Valid

Token for Org. 1

SLIDE

35

© COPYRIGHT 42CRUNCH

Substitution Attack:
Cross JWT
• Lack of exact matching within the same

organization

• E.g. check for "aud": "myorg/*" instead of
"aud":"myorg/finance-ops"

• Can also happen in multitenancy, site
hosting, or any subdomains with any
user content

• Use exact matching to protect yourself

Used
by

Used
by

Derived from

{
“sub”: “joe”
“role”: “write”

}

Norm
al use

Mali
cio

us
 u

se

Private Signing Key Public Signing Key

Finance Ops

Used
by

Attacker (Joe)

Mail Server

Issues Token
for Mail Server

SLIDE

36

© COPYRIGHT 42CRUNCH

{

"user":"dmitry@42crunch.com",

"is_admin":false,

"twitter":"DSotnikov",

"iss":1579551140,

"exp":1579551740

}

Intercept and Reuse
• Attacker gets a hold of the token

• Since this is a bearer token with no
time limits – they just keep using it
as long as they want

• Set short time limits: exp, nbf

• Set minimal scopes

• Tie JWT to a specific client

Demo: Token Validation

SLIDE

38

© COPYRIGHT 42CRUNCH

8
Access Token

These Tokens are not
Opaque
• Client gets the token

• The tokens are not encrypted

• Rogue client can decode the token and
get valuable info from it:

• PII or other exposed info

• Information about internals

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpX
VCJ9.eyJ1c2VyIjoiMTIzNDU2Nzg5MCI
sImlzX2FkbWluIjpmYWxzZSwidHdpdHR
lciI6IkRTb3RuaWtvdiJ9.kIr0UrbBUT
eqZcaUPDDj5USO3mENzNQoENi4xcWYf-
U

{
"user":"dmitry@42crunch.com",
"is_admin":false,
"twitter":"DSotnikov"

}

SLIDE

39

© COPYRIGHT 42CRUNCH

Summary

• Externalize JWT policies

• Do not trust the tokens

• Document and strictly enforce
token schemas

SLIDE

40

© COPYRIGHT 42CRUNCH

Additional Resources
• jwt.io

• 42Crunch.com

• Documentation on 42Crunch JWT
Protections

• APIsecurity.io

• JWT Validation Best Practices:
https://datatracker.ietf.org/doc/rfc87
25/

https://jwt.io/
https://42crunch.com/
https://apisecurity.io/
https://datatracker.ietf.org/doc/rfc8725/

THANK YOU
- questions -

How to Best Leverage JWTs for API Security | Isabelle Mauny & Dmitry Sotnikov | 42crunch.com

