
Securing an API World

ANATOMY OF
API BREACHES

ISABELLEMAUNY
ISABELLE@42CRUNCH.COM

mailto:isabelle@42crunch.com

HOW DO WE SECURE
APIS?

LAYERED APPROACH TO API SECURITY

3

Hypervisor, images (VM/Docker)

Intra-services communication (auth, azn, TLS)

App level security (libs, code, data)

OS / Network / Physical Access

APPLICATION LEVEL SECURITY

Where do we validate that the data we are receiving is what we
expect ?

How do we ensure that we don’t leak data or exceptions?

Where do we validate that the access tokens are the ones we
expect ?

Where do we authenticate/authorize access to business data?

✓ Can Isabelle view a resource with ID 123456 ?

4

APPLICATION LEVEL SECURITY

API Threat Protection
API Access Control

API/Identity managementAPI Firewall

➡Content validation

➡Token validation

➡Traffic management

➡Payload security
(encrypt/sign)

➡Threat detection

➡Access tokens management

➡Authentication

➡Authorization

➡ Identity management

WE NEED GUIDING
PRINCIPLES…

7

GUIDING PRINCIPLE:

ZERO TRUST ARCHITECTURE
1

8

GUIDING PRINCIPLE:

ALL APIS ARE OPEN APIS
2

9

GUIDING PRINCIPLE:

SECURITY IS ADAPTED

FROM RISK

3

…TO PROTECT NEW
APPLICATION

ARCHITECTURES…

TITLE TEXT

Complex deployments
✓

11

FROM PROTECTING THE PERIMETER…

12

…TO PROTECTING THE DATA

…FROM SPECIFIC
API THREATS!

OWASP API SECURITY TOP 10

14

• API1	:	Broken	Object	Level	Authorisation	
• API2	:	Broken	Authentication	
• API3	:	Excessive	Data	Exposure	
• API4	:	Lack	of	Resources	&	Rate	Limiting	
• API5	:	Missing	Function/Resource	Level	Access	Control	
• API6	:	Mass	Assignment	
• API7	:	Security	Misconfiguration	
• API8	:	Injection	
• API9	:	Improper	Assets	Management	
• API10	:	Insufficient	Logging	&	Monitoring	

DOWNLOAD

https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10-cheat-sheet.htm

REAL STORIES AND
LESSONS LEARNT!

UBER (SEPT 2019)

The Attack
✓ Account takeover for any Uber account from a phone number

The Breach
✓ None. This was a bug bounty.

Core Issues
✓ First Data leakage : driver internal UUID exposed through error message!

✓ Hacker can access any driver, user, partner profile if they know the UUID

✓ Second Data leakage via the getConsentScreenDetails operation: full account information is
returned, when only a few fields are used by the UI. This includes the mobile token used to
login onto the account

16

A2

A3

A4

A5

A6

A10

A9

A8

A7

A1

https://appsecure.security/blog/how-i-could-have-hacked-your-uber-account

https://appsecure.security/blog/how-i-could-have-hacked-your-uber-account

API1 (BOLA) MITIGATION

Fine-grained authorisation in every controller layer

Do not use IDs from API request, use ID from session instead (implement
session management in controller layer)

Additionally:
✓ Avoid guessable IDs (123, 124, 125…)

✓ Avoid exposing internal IDs via the API

✓ Alternative: GET https://myapis.com/resources/me

Prevent data scrapping by putting rate limiting in place

17

https://myapis.com/resources/me

API3 (DATA EXPOSURE) MITIGATION

Take control of your JSON schemas !
✓ Describe the data thoroughly and enforce the format at runtime (outbound)

✓ Review and approve data returned by APIs

Never expose tokens/sensitive/exploitable data in API
responses

Never rely on client apps to filter data : instead, create various
APIs depending on consumer, with just the data they need

18

FACEBOOK (FEB 2018)

The Attack
✓ Account takeover via password reset at https://www.facebook.com/login/

identify?ctx=recover&lwv=110.

✓ facebook.com has rate limiting, beta.facebook.com does not!

The Breach
✓ None. This was a bug bounty.

Core Issues
✓ Rate limiting missing on beta APIs, which allows brute force guessing on

password reset code

✓ Misconfigured security on beta endpoints

19

A2

A3

A4

A5

A6

A10

A9

A8

A7

A1

https://appsecure.security/blog/we-figured-out-a-way-to-hack-any-of-facebook-s-2-billion-accounts-and-they-paid-us-a-15-000-bounty-for-it

https://www.facebook.com/login/identify?ctx=recover&lwv=110
https://www.facebook.com/login/identify?ctx=recover&lwv=110
http://facebook.com
http://beta.facebook.com

API2 (BROKEN AUTH) MITIGATION

Enforce 2FA, captcha

Use secure storage for credentials

Use short-lived access tokens and limit their scope

Use OAuth properly (most likely authorization_code with PKCE)
✓ Financial API Grade profiles as reference (https://openid.net/wg/fapi/)

Make sure you validate JWTs according to Best Practices (RFC 8725) -
https://www.rfc-editor.org/rfc/rfc8725.txt

20

https://openid.net/wg/fapi/
https://www.rfc-editor.org/rfc/rfc8725.txt

API4 (RATE LIMITING) MITIGATION

Protect all authentication endpoints from abuse (login, password
reset, OAuth endpoints)

✓ Smart rate limiting : by API Key/access token/user identity/fingerprint

✓ Short timespan

✓ Counter example: Instagram, 200 attempts/min/IP for password reset

21

“In a real attack scenario, the attacker needs 5000 IPs to hack an account. It sounds big but that’s

actually easy if you use a cloud service provider like Amazon or Google. It would cost around 150

dollars to perform the complete attack of one million codes”

https://thezerohack.com/hack-any-instagram

API9 (ASSETS MGT) MITIGATION

Govern all endpoints

Protect APIs from abuse independently from their development
stage (dev, QA, staging, etc.)

✓ Start introducing security in early development stages and automate!

Separate non-production from production data!

Another critical example of this : JustDial (https://
thehackernews.com/2019/04/justdial-hacked-data-breach.html)

22

https://thehackernews.com/2019/04/justdial-hacked-data-breach.html
https://thehackernews.com/2019/04/justdial-hacked-data-breach.html

EQUIFAX AND MANY MORE (2017)

The Attack
✓ Remote command injection attack: server executes commands written in ONGL language when a

Content-Type validation error is raised.

✓ Example:

✓

Core Issue
✓ Unpatched Apache Struts library, with remote command injection vulnerability, widely exploited

during months.

23

A2

A3

A4

A5

A6

A10

A9

A8

A7

A1

https://blog.talosintelligence.com/2017/03/apache-0-day-exploited.html

API 7 (SEC MISCONFIG) MITIGATION

Keep systems and software at latest level

Limit your external dependencies

Control those dependencies in-house
(enterprise repository)

No Trust !! Continuously test for
vulnerabilities and leaking secrets (OS,
libraries, docker images, kubernetes
deployment files, etc.)

24

API 8 (INJECTIONS) MITIGATION

No Trust! (even for internal APIs and for East-West
traffic)

Validate user input, including headers like Content-
Type or Accept

Check behaviour of your dev frameworks when wrong
Content-Type is used

✓ Many default to sending an exception back but experience varies

25

HARBOUR REGISTRY

The Attack
✓ Privilege escalation: become registry administrator

The Breach
✓ 1300+ registries with default security settings

Core Issue
✓ Mass Assignment vulnerability allows any normal user to become an admin

POST /api/users
{“username”:”test”,”email”:”test123@gmail.com”,”realname
”:”noname”,”password”:”Password1\u0021″,”comment”:null,
“has_admin_role” = True}

26

A2

A3

A4

A5

A6

A10

A9

A8

A7

A1

https://unit42.paloaltonetworks.com/critical-vulnerability-in-harbor-enables-privilege-escalation-from-zero-to-admin-cve-2019-16097/

API 6 (MASS ASSIGNMENT) MITIGATION

Do not blindly update data from input structure

Do not use the same data structures to read and updates

Validate Input
✓ Only accept information specified in JSON schema (contract-based, whitelist

approach) - Reject all others.

Special case for GraphQL queries!
✓ Validate complexity

✓ Validate fields accessed via query

Change default settings on any system (ports, credentials)
27

A10 : LOGS, LOGS, LOGS!

Log all API activity

Pushed to security platforms such as SIEMs for automated
Threat detection.

28

WHAT NOW ?

Pick your battles
✓ What are your most sensitive APIs , bringing the highest risk ?

✓ Establish a Threat model

Start worrying about API Security at design time
✓ A vulnerability discovered at production time costs up to 30x more to solve

Hack yourselves!
✓ For each functional test, create 10 negative tests

✓ Hammer your APIs with bad data, bad tokens, bad users

Automate Security
✓ DevSecOps anyone ?

31

GREAT LEARNING EXAMPLE: N26

Major list of issues discovered by PHD student late 2016

Many issues from Top10
✓ No certificate pinning

✓ No rate limiting on Siri (less controlled transactions)

✓ Leaks sensitive mastercardID in every transaction

✓ No protection against brute force for passwords

✓ No monitoring

Two years later, N26 has:
✓ A major security program and security focus

✓ Rooted security deep into the development cycle

✓ https://medium.com/insiden26/n26-security-3-0-81a4e85c5fe8
32

https://media.ccc.de/v/33c3-7969-shut_up_and_take_my_money
https://medium.com/insiden26/n26-security-3-0-81a4e85c5fe8

CONTACT US:

INFO@42CRUNCH.COM

Securing an API World

Start testing your APIs today on apisecurity.io!

mailto:info@42crunch.com
http://www.42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://42crunch.com
http://apisecurity.io

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

42CRUNCH RESOURCES
• 42Crunch Website

• Free OAS Security Audit

• OpenAPI VS Code Extension

• OpenAPI Spec Encyclopedia

• OWASP API Security Top 10

• APIsecurity.io

https://42crunch.com/
https://apisecurity.io/tools/audit/
https://marketplace.visualstudio.com/items?itemName=42Crunch.vscode-openapi
https://apisecurity.io/encyclopedia/content/api-security-encyclopedia.htm
https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10.htm
https://apisecurity.io/

