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A2: BROKEN AUTHENTICATION

Poorly implemented API authentication allowing attackers to assume 
other users’ identities.

USE CASES
•	 Unprotected APIs that are considered “internal”
•	 Weak authentication not following industry best practices
•	 Weak, not rotating API keys
•	 Weak, plain text, encrypted, poorly hashed, shared/default 

passwords
•	 Susceptible to brute force attacks and credential stuffing
•	 Credentials and keys in URL
•	 Lack of access token validation (including JWT validation) 
•	 Unsigned, weakly signed, non-expiring JWTs

HOW TO PREVENT
•	 Check all possible ways to authenticate to all APIs
•	 Password reset APIs and one-time links also allow users to get 

authenticated and should be protected just as seriously
•	 Use standard authentication, token generation, password storage, 

Multi-factor authentication
•	 Use short-lived access tokens
•	 Authenticate your apps (so you know who is talking to you)
•	 Use stricter rate-limiting for authentication, implement lockout 

policies and weak password checks

A1: BROKEN OBJECT LEVEL AUTHORIZATION

Attacker substitutes ID of their resource in API call with an ID of a 
resource belonging to another user. Lack of proper authorization checks 
allows access. This attack is also known as IDOR (Insecure  
Direct Object Reference).

USE CASES
•	 API call parameters use IDs of resourced accessed by the API: 

/api/shop1/financial_details
•	 Attackers replace the IDs of their resources with different ones, 

which they guessed: 
/api/shop2/financial_details

•	 The API does not check permissions and lets the call through
•	 Problem is aggravated if IDs can be enumerated: 

/api/123/financial_details

HOW TO PREVENT
•	 Implement authorization checks with user policies and hierarchy
•	 Don’t rely on IDs sent from client. Use IDs stored in the session 

object instead.
•	 Check authorization each time there is a client request to 

access database
•	 Use random non-guessable IDs (UUIDs)

A3: EXCESSIVE DATA EXPOSURE

API exposing a lot more data than the client legitimately needs, relying 
on the client to do the filtering. Attacker goes directly to the API and has 
it all.

USE CASES
•	 APIs return full data objects as they are stored by the database
•	 Client application shows only the data that user needs to see
•	 Attacker calls the API directly and gets sensitive data

HOW TO PREVENT
•	 Never rely on client to filter data
•	 Review all responses and adapt responses to what the API  

consumers really need
•	 Define schemas of all the API responses
•	 Don’t forget about error responses
•	 Identify all the sensitive or PII info and justify its use
•	 Enforce response checks to prevent accidental data and exception 

leaks

A4: LACK OF RESOURCES & RATE LIMITING

API is not protected against an excessive amount of calls or payload 
sizes. Attackers use that for DoS and brute force attacks.

USE CASES
•	 Attacker overloading the API
•	 Excessive rate of requests
•	 Request or field sizes
•	 “Zip bombs”

HOW TO PREVENT
•	 Rate limiting
•	 Payload size limits
•	 Rate limits specific to API methods, clients, addresses
•	 Checks on compression ratios
•	 Limits on container resources
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A7: SECURITY MISCONFIGURATION

Poor configuration of the API servers allows attackers to exploit them.

USE CASES
•	 Unpatched systems
•	 Unprotected files and directories
•	 Unhardened images
•	 Missing, outdated, misconfigured TLS
•	 Exposed storage or server management panels
•	 Missing CORS policy or security headers
•	 Error messages with stack traces
•	 Unnecessary features enabled

HOW TO PREVENT
•	 Repeatable hardening and patching processes
•	 Automated process to locate configuration flaws
•	 Disable unnecessary features
•	 Restrict administrative access
•	 Define and enforce all outputs including errors

A8: INJECTION

Attacker constructs API calls that include SQL-, NoSQL-, LDAP-, OS- and 
other commands that the API or backend behind it blindly executes.

USE CASES
Attackers send malicious input to be forwarded to an internal 
interpreter:
•	 SQL, NoSQL
•	 LDAP
•	 OS commands
•	 XML parsers
•	 Object-Relational Mapping (ORM)

HOW TO PREVENT
•	 Never trust your API consumers, even if internal
•	 Strictly define all input data: schemas, types, string patterns - and 

enforce them at runtime
•	 Validate, filter, sanitize all incoming data
•	 Define, limit, and enforce API outputs to prevent data leaks

A5: BROKEN FUNCTION LEVEL AUTHORIZATION

API relies on client to use user level or admin level APIs. Attacker figures 
out the “hidden” admin API methods and invokes  
them directly.

USE CASES
•	 Some administrative functions are exposed as APIs
•	 Non-privileged users can access these functions if they  

know how
•	 Can be a matter of knowing the URL, using a different  

verb or parameter

/api/users/v1/user/myinfo
/api/admins/v1/users/all

HOW TO PREVENT
•	 Don’t rely on app to enforce admin access
•	 Deny all access by default
•	 Grant access based on specific roles
•	 Properly design and test authorization

A6: MASS ASSIGNMENT

USE CASES
•	 API working with the data structures
•	 Received payload is blindly transformed into an object and stored

 
NodeJS:
var user = new User(req.body);
user.save();

Rails:
@user = User.new(params[:user])  

•	 Attackers can guess the fields by looking at the GET request data

HOW TO PREVENT
•	 Don’t automatically bind incoming data and internal objects
•	 Explicitly define all the parameters and payloads you are expecting
•	 For object schemas, use the readOnly set to true for all properties that 

can be retrieved via APIs but should never be modified
•	 Precisely define at design time the schemas, types, patterns you will 

accept in requests and enforce them at runtime
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A9: IMPROPER ASSETS MANAGEMENT

Attacker finds non-production versions of the API: such as staging, 
testing, beta or earlier versions - that are not as well protected, and uses 
those to launch the attack.

USE CASES
•	 DevOps, cloud, containers, K8S make having multiple deployments 

easy (Dev, Test, Branches, Staging, Old versions) 
•	 Desire to maintain backward compatibility forces to leave old APIs 

running
•	 Old or non-production versions are not properly maintained
•	 These endpoints still have access to production data
•	 Once authenticated with one endpoint, attacker may switch to the 

other

HOW TO PREVENT
•	 Inventory all API hosts
•	 Limit access to anything that should not be public
•	 Limit access to production data. Segregate access to production and 

non-production data.
•	 Implement additional external controls such as API firewalls
•	 Properly retire old versions or backport security fixes
•	 Implement strict authentication, redirects, CORS, etc. 

A10: INSUFFICIENT LOGGING & MONITORING

Lack of proper logging, monitoring, and alerting let attacks go unnoticed.

USE CASES
•	 Lack of logging, monitoring, alerting allow attackers to go unnoticed
•	 Logs are not protected for integrity
•	 Logs are not integrated into Security Information and Event 

Management (SIEM) systems
•	 Logs and alerts are poorly designed
•	 Companies rely on manual rather than automated systems

HOW TO PREVENT
•	 Log failed attempts, denied access, input validation failures, any 

failures in security policy checks
•	 Ensure that logs are formatted to be consumable by other tools
•	 Protect logs as highly sensitive
•	 Include enough detail to identify attackers
•	 Avoid having sensitive data in logs - If you need the information for 

debugging purposes, redact it partially.
•	 Integrate with SIEMs and other dashboards, monitoring, alerting 

tools

API Security Info & News
APIsecurity.io

42Crunch API Security Platform 
42Crunch.com

VS Code OpenAPI Extension 
https://bit.ly/42vscode

ABOUT 42CRUNCH
The 42Crunch platform provides a set of integrated tools 
to easily build security into the foundation of your API 
and enforce those policies throughout the API lifecycle. 
By delivering security as code you enable a seamless 
DevSecOps experience, allowing innovation at the speed of 
business without sacrificing integrity.

ABOUT OWASP
The OWASP Foundation came online on December 1st, 
2001 it was established as a not-for-profit charitable 
organization in the United States on April 21, 2004, to 
ensure the ongoing availability and support for our work 
at OWASP. OWASP is an international organization and the 
OWASP Foundation supports OWASP efforts around the 
world. OWASP is an open community dedicated to enabling 
organizations to conceive, develop, acquire, operate, 
and maintain applications that can be trusted. All of the 
OWASP tools, documents, forums, and chapters are free 
and open to anyone interested in improving application 
security. We advocate approaching application security as 
a people, process, and technology problem because the 
most effective approaches to application security include 
improvements in all of these areas. We can be found at 
www.owasp.org.

OWASP PROJECT DETAILS
https://www.owasp.org/index.php/OWASP_API_Security_
Project

GITHUB PROJECT
https://github.com/OWASP/API-Security
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